金鹰国际娱乐APP,

服務熱線

+8610-84928167

NPG 小鼠

1.基本信息

(1)品系名稱:NOD.Cg-Prkdcscid Il2rgtm1Vst/Vst

(2)常用名:NPG小鼠

(3)背景:NOD

(4)毛色:白色

(5) 品系建立:NPG小鼠,是北京金鹰国际娱乐APP生物技术有限公司自主研发的一系列高度免疫缺陷大小鼠模型之一,将获得的Il2rg基因敲除小鼠,回交到NOD-scid背景建立的高度免疫缺陷模型。使用该小鼠模型已经发表了一系列高水平研究论文[1~12]。


2.制作簡介

首先构建了Il2rg基因打靶载体,在B6/129 F1背景的ES細胞上,筛选得到将Il2rg基因敲除的阳性打靶細胞(见圖1)。通过囊胚注射的方法,获得了Il2rg基因敲除的ES嵌合小鼠。然后,将ES打靶小鼠,与NOD-scid小鼠回交,从后代中选择Il2rg因基敲除鼠,再与NOD-scid小鼠回交。通过12代的回交,获得并选择Il2rg-雄鼠和Il2rg+/-雌鼠交配,獲得PrkdcscidIl2rg-/-小鼠。隨後,NOD.PrkdcscidIl2rg-/- 小鼠按照近交系的方式擴繁生产。

 5dc91c3f61400.png

圖1. Il2rg 基因打靶策略示意圖



3.質控檢測和表型分析

NPG小鼠主要包括两个基因突变,(1)Prkdc基因的點突變,在84号外显子上,TAT→TAA,产生了一个无效的包含83AA的删短蛋白;(2)Il2rg基因小鼠,3-8外显子的编码区被删除。NPG小鼠的SNP分析结果见表1,与NOD-scid (NOD.CB17- Prkdcscid/NcrCrlVr)小鼠一致。


表1. NPG 和NOD-scid 小鼠SNP分析结果。


SNP ID

Chr-cM

Allele

NPG

NOD-scid

1

RS8253473-SNP1

1-80

V=A, F=C

F F

F F

2

RS13476104-SNP1

1-128

V=C, F=T

V V

V V

3

RS13476435-SNP1

2-35

V=A, F=T

F F

F F

4

RS13476730-SNP1

2-119

V=A, F=T

V V

V V

5

RS13477470-SNP1

3-146

V=A, F=G

V V

V V

6

RS13478001-SNP1

4-135

V=C, F=T

V V

V V

7

RS13478215-SNP1

5-42

V=A, F=C

F F

F F

8

RS13459087-SNP1

5-86

V=A, F=G

F F

F F

9

RS13478818-SNP1

6-73

V=C, F=G

F F

F F

10

RS3710839-SNP1

6-121

V=A, F=G

V V

V V

11

RS3666902-SNP1

7-15

V=T, F=C

VV

VV

12

RS8260975-SNP1

7-34

V=A, F=C

V V

V V

13

RS13479791-SNP1

8-60

V=A, F=G

F F

F F

14

RS4227276-SNP1

8-80

V=C, F=T

F F

F F

15

RS8254841-SNP1

9-38

V=A, F=T

F F

F F

16

RS13480385-SNP1

9-103

V=C, F=T

V V

V V

17

RS13480546-SNP1

10-24

V=C, F=T

F F

F F

18

RS13480803-SNP1

10-123

V=C, F=T

V V

V V

19

RS13480933-SNP1

11-25

V=C, F=G

V V

V V

20

RS3653651-SNP1

11-102

V=C, F=T

F F

F F

21

RS13481624-SNP1

12-99

V=C, F=G

F F

F F

22

RS13481852-SNP1

13-63

V=A, F=C

V V

V V

23

RS13482131-SNP1

14-30

V=C, F=T

V V

V V

24

RS13459176-SNP1

15-3

V=A, F=C

V V

V V

25

RS4170048-SNP1

16-32

V=C, F=G

V V

V V

26

RS13482843-SNP1

17-4

V=C, F=T

V V

V V

27

RS13483295-SNP1

18-35

V=G, F=T

V V

V V

28

RS13483601-SNP1

19-34

V=A, F=G

F F

F F

29

RS13483739-SNP1

X-40

V=C, F=T

V V

V V

30

RS13483962-SNP1

X-109

V=A, F=C

F F

F F



NOD(non-obese diabetes) 背景适宜人源細胞移植[13];Prkdc基因突变,小鼠T、B細胞缺失[14,15];Il2rg蛋白的gamma链被敲除,其NK細胞活力几乎丧失[16,17]。因而其基因检测和表型分析主要集中在4个方面:①NOD背景(SNP检测);②Prkdc點突變(PCR检测;T、B細胞缺失的流式检测);③Il2rg敲除(PCR检测,功能性NK細胞缺失的流式检测);④細胞移植重建分析。


(1) NOD背景检测                                   

NPG小鼠制作使用的NOD-scid小鼠,其遗传检测数据见右上30个SNP(single nucleotide polymorphism)位点信息表,这些位点遗传标记分布于20条染色体。


(2) Prkdc點突變、Il2rg敲除和NOD背景(Sirpa基因)检测

Prkdc點突變小鼠, 1983年由福克斯蔡斯癌症中心(Fox Chase Cancer Centre)的Bosma等人发现[14,15]。Prkdc(protein kinase DNA-activated catalytic)基因突变,小鼠的T和B細胞缺失 ,表现为細胞免疫和体液免疫的重度联合免疫缺陷(severe combined immune deficiency, scid)。Il2rg敲除小鼠表现为胸腺发育不全,NK細胞数量减少,活性丧失[16,17]。目前Prkdc點突變常用的检测方法为PCR检测;蛋白水平的检测最方便的是流式分析其外周血中T、B淋皥D毎暮俊l2rg敲除常用的检测方法为PCR检测;蛋白水平的检测最方便的是流式分析其脾脏中NK細胞的含量和活性。NPG小鼠采用上述方法进行质控,结果见下圖。


image.png

                         2 Prkdc基因PCR检测                                 圖3 Il2rg基因PCR检测


            image.png

            圖4  NOD背景(Sirpa基因)检测


(3) T、B和NK細胞检测

image.png

圖5  NPG小鼠缺失有功能的T、B和NK細胞。流式分析B6, Balb/c nude和NPG小鼠外周血中CD3+ CD4+ or CD3+CD8+ T 細胞 , B220+ B 細胞和NKp46+ NK 細胞的含量。



(4) 造血干細胞移植重建和腫瘤細胞移植数据


 ① NPG小鼠移植人造血干細胞效果显著优于NOD-scid小鼠。


 image.png

圖6 NPG和NOD-scid小鼠移植人造血干細胞,第12周时人CD45+細胞嵌合率分析。左圖为移植后12周时外周血中人CD45+細胞比例的流式分析结果;右圖为骨髓中人CD45+細胞的比例。

 


②人造血干細胞(HSCs)移植NPG小鼠高水平重建造血系统

圖7  NPG小鼠移植人造血干細胞(HSCs)后,可以高水平重建造血系统。左圖为将 5×104脐带血CD34+細胞通过骨髓移植入6-8周的NPG小鼠后检测结果; 右圖为1×105脐带血CD34+細胞移植后16周在NPG小鼠脾脏中检测到高水平的人CD45+細胞



③人造血干細胞(HSCs)移植NPG小鼠后重建各系造血細胞比例检测

image.pngimage.pngimage.pngimage.png

圖8人造血干細胞(HSCs)移植NPG小鼠后获得各系造血細胞分化的高水平重建。上圖显示的为将5×104脐带血CD34+細胞移植16周后,在NPG小鼠外周血中检测到高水平的人CD45+細胞(46.54%)、CD19+ B細胞(70.9%)、CD3+ T細胞(17.33%)和CD33+髓系細胞(8%)。



333.pngimage.png

圖9 人造血干細胞(HSCs)移植NPG小鼠后各系細胞重建。脐带血CD34+細胞移植NPG小鼠12周以及更长时间之后,人源造血細胞稳定重建,T細胞所占比例逐渐升高。



④NPG小鼠更适合于腫瘤免疫治疗的相关研究


image.png       image.png

10 人腫瘤細胞移植NPG小鼠后更容易成瘤。上圖为使用NPG小鼠和BALB/c裸鼠,皮下接种人黑色素瘤細胞A375SM后,活体成像的腫瘤示踪圖,可见NPG小鼠成瘤,与裸鼠相比,大小更均匀,生长到一定体积需要的时间相对更短。



4. 应用领域

(1)人源細胞或组织移植

(2)腫瘤和腫瘤干細胞研究

(3)ES和iPS細胞研究

(4)造血和免疫學研究

(5)人類疾病感染模型研究

(6)人源化動物模型研發


5. 参考文献

1. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia.Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, Wang L, Liu T, Wang X, Zhang B, Zhao L, Hu L, Ning H, Zhang Y, Deng K, Liu L, Lu X, Zhang T, Xu J, Li C, Wu H, Deng H, Chen H.N Engl J Med. 2019 Sep 26;381(13):1240-1247. doi: 10.1056/NEJMoa1817426. Epub 2019 Sep 11.

2. Chimeric Antigen Receptor-modified T Cells Repressed Solid Tumors and Their Relapse in an Established Patient-derived Colon Carcinoma Xenograft Model.Teng R, Zhao J, Zhao Y, Gao J, Li H, Zhou S, Wang Y, Sun Q, Lin Z, Yang W, Yin M, Wen J, Deng H. J Immunother. 2019 Feb/Mar; 42(2):33-42. doi: 10.1097/CJI.0000000000000251.

3.Targeting JNK pathway promotes human hematopoietic stem cell expansion.Xiao X, Lai W, Xie H, Liu Y, Guo W, Liu Y, Li Y, Li Y, Zhang J, Chen W, Shi M, Shang L, Yin M, Wang C, Deng H.Cell Discov. 2019 Jan 8;5:2. doi: 10.1038/s41421-018-0072-8. eCollection 2019.

4. Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg-/- mice.Du Y, Wang T, Xu J, Zhao C, Li H, Fu Y, Xu Y, Xie L, Zhao J, Yang W, Yin M, Wen J, Deng H.Protein Cell. 2019 Jan;10(1):31-42. doi: 10.1007/s13238-018-0558-z. Epub 2018 Jun 13.

5.Engineered T lymphocytes eliminate lung metastases in models of pancreatic cancer.Sun Q, Zhou S, Zhao J, Deng C, Teng R, Zhao Y, Chen J, Dong J, Yin M, Bai Y, Deng H, Wen J.Oncotarget. 2018 Jan 10;9(17):13694-13705. doi: 10.18632/oncotarget.24122. eCollection 2018 Mar 2.

6.Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017 Apr 6;169(2):243-257.e25. doi: 10.1016/j.cell.2017.02.005.

7.CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017 Jan;27(1):154-157. doi: 10.1038/cr.2016.142. Epub 2016 Dec 2.

8.CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, Liu Y, Wang X, Li H, Lai W, He Y, Yao A, Ma L, Shao Y, Zhang B, Wang C, Chen H, Deng H.Mol Ther. 2017 Aug 2;25(8):1782-1789. doi: 10.1016/j.ymthe.2017.04.027. Epub 2017 May 17

9.Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA.Cell Discov. 2015 Dec 8;1:15040. doi: 10.1038/celldisc.2015.40.

10.A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell. 2015 Dec 17;163(7):1678-91. doi: 10.1016/j.cell.2015.11.017. Epub 2015 Dec 10.

11.Efficient derivation of embryonic stem cells from NOD-scid Il2rg (-/-) mice. Protein Cell. 2015 Dec;6(12):916-8. doi: 10.1007/s13238-015-0209-6.

12.Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts.Cell Stem Cell. 2014 Oct 2;15(4):488-497. doi: 10.1016/j.stem.2014.09.004.

13.Takenaka K, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007 ;8(12):1313-23.

14.Bosma GC et al. A severe combined immunodeficiency mutation in the mouse. Nature, 1983; 301(5900): 527-30.

15.Bosma GC et al. The mouse mutation severe combined immune deficiency (scid) is on chromosome 16. Immunogenetics, Jan 1989; 29(1): 54-7.

16.Ohbo K et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood. 1996 Feb 1;87(3):956-67.

17.Cao X et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain.Immunity. 1995 Mar;2(3):223-38.